JIOH on LinkedIn JIOH on Facebook
  • Users Online: 92
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2021  |  Volume : 13  |  Issue : 2  |  Page : 164-168

Antibacterial activity of melatonin against prime periodontal pathogens: An in vitro study

1 Department of Periodontology, Jagadguru Sri Shivarathreshwara Dental College and Hospital, Mysuru, Karnataka, India
2 Public Health Dentistry, Jagadguru Sri Shivarathreshwara Dental College and Hospital, Mysuru, Karnataka, India
3 Department of Microbiology, Jagadguru Sri Shivarathreshwara Medical College and Hospital, Mysuru, Karnataka, India
4 Department of Pharmaceutics, Jagadguru Sri Shivarathreshwara College of Pharmacy, Mysuru, Karnataka, India

Correspondence Address:
Dr. Aruna Ganganna
Department of Periodontology, Jagadguru Sri Shivarathreshwara Dental College and Hospital, Mysuru 570015, Karnataka.
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jioh.jioh_225_20

Rights and Permissions

Aim: Accumulated data make it clear that by introducing large amount of antibiotics into the ecosystem, we have provided an environment conducive to antibiotic resistance and periodontal microbes are no different. Therefore, in the quest of finding a suitable drug as an alternate to antibiotic, we investigated the antibacterial activity of melatonin against predominantly Gram-negative periodontal pathogens in vitro. Melatonin with varied functions has driven its usage enormously; therefore, identifying its action against periodontal pathogens has driven this laboratory investigation. Materials and Methods: American type culture collection (ATCC) strains of Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans were used to determine minimum inhibitory and bactericidal concentrations (MIC and MBC) of melatonin using macro broth dilution method. MIC values were determined at 24, 48, and 72 h and sensitive MIC values were sub-cultured to determine MBC value at 24 h. Qualitative data were obtained and it was recorded as “sensitive” or “resistant” at respective concentrations. Results: When tested over a dilution range of 0.2–100 µg/mL, melatonin significantly inhibited microbial growth. At 48 h, the MIC value against A. actinomycetemcomitans, P. gingivalis, and F. nucleatum was 6.25, 0.8, and ≤0.2 µg/mL, respectively. The MBC value determined at 24 h demonstrated significant bactericidal activity against the pathogens. Conclusion: Melatonin exhibited bactericidal activity against prime periodontal pathogens even at low concentrations in comparison to previously documented evidences suggesting greater potency of the drug. Hence, renewed effort to find and develop new class of drug which can inhibit periodontal pathogens, rather than just improvements on already-existing drugs can potentially prevent the development of resistant strains in periodontal microenvironment.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded71    
    Comments [Add]    

Recommend this journal